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Substructure Synthesis: A Controls Approach
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Substructure synthesis from a controls perspective is considered. An eÆcient and
computationally robust method for synthesis of substructures is developed. The method
considers the interface forces/moments as control inputs and rede�nes the synthesis
problem in terms of obtaining a constant gain compensator which would ensure the con-
nectivity requirements of the combined structure. Orthogonal similarity transformations
are used to provide simpli�ed synthesized dynamics of the combined system. The sim-
plicity of form in transformed coordinates are exploited to e�ectively deal with modeling
parametric and non-parametric uncertainties at substructure level. Uncertainty models
of reasonable size and complexity are derived for the combined structure from those in
the substructure models.

Introduction

Substructure synthesis is a well established area in
the modeling of 
exible structures as is evident in the
voluminous literature of which a sample of tutorial
papers are given in [1-6]. It is concerned with the
modeling of the structural dynamics of substructures
(or components) and then synthesizing them to pre-
dict the combined structural response. This synthesis
is accomplished by enforcing de
ection compatibility
and force equilibrium at all substructure interfaces.
There are several advantages of modeling via sub-
structure synthesis, among these, (1) it allows much
independence in the design and analysis of substruc-
tures, which is especially helpful if substructures are
designed, fabricated, and even tested by di�erent or-
ganizations. An example is the damping synthesis for
the Space Shuttle7 and more recently the component
modules for the International Space Station which are
built by di�erent companies in several countries. (2)
it increases the power of existing �nite-element anal-
ysis and design programs by allowing analysis/design
by components especially in problems where too many
�nite element degrees of freedom are required to per-
form a dynamic analysis/design of the complete sys-
tem. (3) It allows a direct synthesis of substructure
test data. This is particularly useful for very large
structural systems (such as the International Space
Station) that cannot be tested as a whole. This also
means that it can be used as a part of an experimental
veri�cation tool for substructures before deployment
as a connected structure.
Since its earliest work in,1 the primary goal of
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substructure synthesis methods has not changed, i.e.
to accurately predict the combined modal parame-
ters: structural resonant frequencies and mode shapes.
Consistent with the primary goal, most attention has
been given to the issue of selecting a most e�ective sub-
set of component (or assumed) modes and the related
issue of modeling the substructure interfaces. Thus,
relatively little attention has been given to issues ger-
mane to active control.

In this paper, we re-examine the substructure syn-
thesis method from a controls perspective. In particu-
lar, our end goal is to develop a physically realistic and
highly eÆcient way of modeling and controlling large

exible structures based on substructure (subsystems)
models. As in any studies in multivariable control,
we are concerned with the issues of closed loop sta-
bility and performance robustness due to inevitable
modeling errors, con�guration changes, or exogenous
disturbances. Since the stability and robustness is
strongly dependent on the degree of accuracy of the
mathematical model to the physical structure, we also
examine the issues of modeling uncertainties for the
substructures and their in
uence on the output of the
connected structure.

Substructure Synthesis

For simplicity of presentation, consider two compo-
nents, shown in Fig. 1, that have to be synthesized.
Consider the interface forces and moments (between
the two components) as control input forces yet to
be determined. Moreover, assume that collocated
and compatible with the interface forces/moments
are linear/angular velocity outputs from each com-
ponent. With these considerations, the linear and
time-invariant dynamics of the two components are
represented as follows

component 1
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Fig. 1 Synthesized substructures

M1�z1 +D1 _z1 +K1z1 = ~B1u+ ~H1p1 (1)

y1 = ~Cr1 _z1 (2)

yp1 = ~Ld1z1 + ~Lr1 _z1 + ~La1 �z1 (3)

component 2

M2�z2 +D2 _z2 +K2z2 = � ~B2u+ ~H2p2 (4)

y2 = ~Cr2 _z2 (5)

yp2 = ~Ld2z2 + ~Lr2 _z2 + ~La2 �z2 (6)

where, for component i, zi denotes the displacement
vector; Mi is the positive de�nite inertia matrix;
Di is the damping matrix; Ki is the non-negative
de�nite sti�ness matrix; ~Bi is the in
uence matrix
for the interface forces/moments; u is the interface
force/moment vector; yi is the interface velocity vec-
tor; ~Cri is the corresponding output in
uence matrix;
ypi is the performance output vector; which could be
a combination of displacement, velocity, and acceler-
ation outputs; and ~Ldi , ~Lri , and ~Lai are the corre-
sponding in
uence matrices. Since the order of a large

exible space structure (LFSS) can be quite large, for
design and analysis purposes the order of the system
is reduced to a design size using model reduction tech-
niques such as modal truncation or modal cost analysis
to obtain for component i, i=1,2

Mri �qri +Dri _qri +Kriqri = ��i
T ~Biu+�i

T ~Hipi
(7)

yi = ~Cri�i _qri (8)

ypi = ~Ldi�iqri + ~Lri�i _qri + ~Lai�i�qri (9)

where qri is the vector of modal amplitudes ob-
tained from transformation zi = �iqri ; Mri , Dri ,
Kri are, respectively, the generalized inertia, damp-
ing and sti�ness matrices; and �i is a matrix
whose columns are the r open-loop eigenvectors as-
sociated with the included modes. If the mode
shapes are normalized with respect to the inertia ma-
trix, and modal damping is assumed, then Mri =
Ir�r, Dri = Diagf2�1i!1i ; : : : ; 2�ri!rig, and Kri =
Diagf!2

1i
; : : : ; !2

ri
g, where !ji and �ji , j = 1; : : : ; r

are the open-loop frequencies and damping ratios for
the ith component. De�ning the state vector xi =
f qri _qri g

T ; i = 1; 2, the second-order dynamics of
the components can be rewritten in �rst-order forms
as follows

component 1

_x1 = A1x1 +B1u+H1p1 (10)

y1 = C1x1 (11)

yp1 = L1x1 +Du1u+Dp1p1 (12)

component 2

_x2 = A2x2 +B2u+H2p2 (13)

y2 = C2x2 (14)

yp2 = L2x2 +Du2u+Dp2p2 (15)

where Ai, Bi, Hi, Ci, and Li, i = 1; 2, respectively
denote the state matrix, input in
uence (interface
forces or moments) matrix, exogenous disturbances in-

uence matrix, velocity output in
uence matrix, and
non-interface output in
uence matrix for each com-
ponent. The matrices Du1 , Dp1 , Du2 , and Dp2 ,
represent feedthrough matrices associated with non-
interface outputs of each component; x1 and x2 denote
the state vectors of the components; y1 and y2 denote
the interface velocity output vectors; yp1 and yp2 de-
note the non-interface output vectors components; and
p1 and p2 represent the exogenous disturbances acting
on the components. The system matrices in the �rst-
order forms are related to those in second-order forms
as follows:

Ai =

�
0 I

�Kri �Dri

�
; Bi =

�
0

��i
T ~Bi

�
(16)
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Hi =

�
0

�i
T ~Hi

�
; Cri =

�
0 ~Cri�i

�
; (17)

Li =
�
~Ldi�i � ~Lai�iKri

~Lri�i � ~Lai�iDri

�
(18)

Dui
= �~Lai�i�i

T ~Bi ; Dpi = ~Lai�i�i
T ~Hi (19)

Now, for the two components to be connected, in a
dynamical sense, one has to �nd a control input vector
u, representing the internal forces and moments at the
interface, such that the displacements and rotations of
the two components at the interface remain identically
the same for all p1 and p2, and all compatible initial
conditions. To achieve this, append the dynamics of
the components, to obtain

�
_x1
_x2

�
=

�
A1 0
0 A2

��
x1
x2

�
+

�
B1

B2

�
u+

�
H1 0
0 H2

��
p1
p2

�
(20)

y � y1 � y2 =
�
C1 �C2

�� x1
x2

�
(21)

yp �

�
yp1
yp2

�
=

�
L1 0
0 L2

��
x1
x2

�
+

�
Du1

Du2

�
u+

�
Dp1 0
0 Dp2

��
p1
p2

�
(22)

The new output vector y is the di�erence between the
velocity of the two components at their interface. The
problem is to �nd u such that y is identically zero for
all p1 and p2, and compatible x1(0) and x2(0). From
Eq. (21), for y to remain identically zero for all p1

and p2,

�
x1
x2

�
must remain identically in the right

null space of the matrix
�
C1 �C2

�
. This means

that an appropriate control vector u must be found
that would render the system identically unobservable,

i.e.,

�
x1
x2

�
identically remains in the undetectable

subspace of the system given in Eqs. (20) and (21) for
all p1 and p2. Let Nc denote an orthonormal basis for
the right null space of

�
C1 �C2

�
, i.e.,

�
C1 �C2

�
Nc = 0 (23)

and let Rc denote an orthonormal complement to Nc.
Transform the system in Eq. (20) via an orthogonal
similarity transformation, such that�

x1
x2

�
=
�
Nc Rc

�� �

�

�
(24)

The dynamics of the system in new coordinates be-
comes
�

_�
_�

�
=

�
Â1 Â2

Â3 Â4

��
�

�

�
+

�
B̂1

B̂2

�
u+

�
Ĥ1

Ĥ2

�
p

(25)

where p =

�
p1
p2

�
and

�
Â1 Â2

Â3 Â4

�
=
�
Nc Rc

�T � A1 0
0 A2

� �
Nc Rc

�
(26)

�
B̂1

B̂2

�
=
�
Nc Rc

�T � B1

B2

�
(27)

�
Ĥ1

Ĥ2

�
=
�
Nc Rc

�T � H1 0
0 H2

�
(28)

Note that the linear and angular velocities at the in-
terface are collocated and compatible with the forces
and moments, i.e., C1 = BT

1
and �C2 = BT

2
, such that

along with Eq. (23), one has

NT
c

�
B1

B2

�
= NT

c

�
C1 �C2

�T
= 0 (29)

resulting in

B̂1 = NT
c

�
B1

B2

�
= 0 (30)

Now, the control input vector umust be chosen such
that �(t), which represents the coordinates incom-
patible with the connectivity of the two components,
remains identically zero for all t, p, and "compatible"
initial conditions, i.e., �(0) = 0. To accomplish this,
the input vector umust be chosen to render � unreach-
able from p, that is

u = �B̂�1
2

[Â3�+ Ĥ2p] (31)

Note that the feedback gain associated with � and
the feedthrough term associated with p must be in the
form given in Eq. (31) to render � unreachable from p.
Although, any u in the form of u = �B̂�1

2
[Â3�+Ĥ2p]+

R�, with R as a non-destabilizing arbitrary matrix,
would also be feasible, the condition for synthesizing
the dynamics of the combined system necessitates that
� = 0 for all t, thereby reducing the expression for u
to that given in Eq. (31). The matrix inversion in
Eq. (31) is guaranteed, as long as both input in
uence
matrices B1 and B2 are full rank, which they are since
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the interface forces are distinct. Therefore, since B1

and B2 are full rank, so is

�
B1

B2

�
, and so is B̂2, since

B̂2 = RT
C

�
B1

B2

�
, and Rc is an orthonormal basis for

the column space of

�
B1

B2

�
. Using the control input

u of Eq. (31) in Eq. (25), with the aid of Eq. (30)
simpli�es to

�
_�
_�

�
=

�
Â1 Â2

0 Â4

��
�

�

�
+

�
Ĥ1

0

�
p (32)

It is obvious from this equation that if the initial con-
ditions are compatible, such that �(0) = 0, then �

remains identically zero for all p and t, which means
that, in the physical coordinates, y1 = y2 for all p
and t. Therefore, compatibility conditions between
the two components would be satis�ed for all p and
t. The synthesized dynamics of the combined sys-
tem can be written in a reduced-order form in the
transformed coordinates, or in the original component-
based coordinates. In the transformed coordinates,
these dynamics are given as follows

_� = Â1�+ Ĥ1p (33)

with the non-interface output de�ned from Eqs. (12),
(15), (24), and (31)

yp �

�
yp1
yp2

�
= N̂1�+ D̂1p (34)

where

N̂1 =

�
L1 0
0 L2

�
Nc �

�
Du1

Du2

�
B̂�1
2
Â3 (35)

D̂1 =

�
Dp1 0
0 Dp2

�
�

�
Du1

Du2

�
B̂�1
2
Ĥ2 (36)

The dynamics of the combined system may also be
presented in the original coordinates. Rede�ne the in-
terface feedback law (Eq. (31)) in terms of the original
coordinates, to obtain

u = �B̂�1
2

[Â3N
T
c

�
x1
x2

�
+ Ĥ2p]

� �
�
G1 G2

�� x1
x2

�
�
�
D1 D2

�� p1
p2

�

(37)

with the constant gain matrices G1 and G2, and the
feedthrough terms D1 and D2 de�ned as

�
G1 G2

�
= B̂�1

2
Â3N

T
c ;

�
D1 D2

�
= B̂�1

2
H2

Using Eq. (37) in Eqs. (20) and (22), results in the
combined dynamics of the two components in the orig-
inal coordinates.

�
_x1
_x2

�
=

�
A1 �B1G1 �B1G2

�B2G1 A2 �B2G2

��
x1
x2

�
+

�
H1 �B1D1 �B1D2

�B2D1 H2 �B2D2

��
p1
p2

�
(38)

yp =

�
L1 �Du1G1 �Du1G2

�Du2G1 L2 �Du2G2

��
x1
x2

�
+

�
Dp1 �Du1D1 �Du1D2

�Du2D1 Dp2 �Du2D2

��
p1
p2

�
(39)

Model Uncertainty

In this section, issues of parametric and nonpara-
metric uncertainties in the component models and the
way they e�ect the synthesized dynamics of the system
will be considered. Parametric uncertainties include
uncertainties in modal frequencies, damping ratios,
and mode shapes of the components. The nonpara-
metric uncertainties considered here are the unmod-
eled dynamics of the components. If modal models are
used to represent the component dynamics, nonpara-
metric uncertainties would be due to the truncated
modes of the components. The development in this
section uses the representation of the synthesized dy-
namics of the system in the transformed coordinates,
as given in Eq. (33). This would make the treatment
of parametric and nonparametric uncertainties easier.
Here, only the case wherein there are no feedthrough
terms (acceleration terms) associated with the non-
interface outputs (see Eq. (34)), is considered. The
treatment for the general case would be similar but
more involved.

Uncertainty in Frequency and Damping

As mentioned earlier, the uncertainties in modal fre-
quency and damping are embedded in the elements of
the state matrices A1 and A2. One can represent these
uncertainties via additive uncertainty blocks �A1 and
�A2, such that the true state matrices are given by

A1 ! A1 +�A1 (40)

A2 ! A2 +�A2 (41)

Note that no assumption is made on the structure of
the uncertainty blocks, �A1 and �A2, i.e., they can
be structured or unstructured. Using Eqs. (40)-(41)
in Eq. (33), and assuming that there are no uncer-
tainties in the mode shape data and nonparametric
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uncertainties present, one obtains the uncertainty rep-
resentation in the transformed coordinates.

_� = (Â1 +�Â1)�+ Ĥ1p (42)

where

�Â1 = NT
c

�
�A1 0
0 �A2

�
Nc =

NT
c1
�A1Nc1 +NT

c2
�A2Nc2 (43)

Nc1 and Nc2 are column partition of Nc according to
the components. This indicates that the additive para-
metric uncertainties in the component dynamics in the
original coordinates carries through to the synthesized
system in transformed coordinates, in the sense that it
still remains in the form of an additive parametric un-
certainty. However, it is observed from Eq. (43) that
the structure of the uncertainty does not remain the
same, its size decreases to match Â1, but its bound re-
mains invariant, since columns of Nc are orthonormal.
In other words, �Â1 would have the same bounds as
that of �A, i.e.,

j�Aj � Æ ! j�Â1j � Æ (44)

The parametric uncertainty problem given in Eq. (43)
may easily be put in a linear fractional representation
(LFT) form for robust control design and/or analysis.
Also, one could observe from Eq. (38) that, in this
case, treating the uncertainty in the transformed co-
ordinates would be cleaner and easier than treating it
in the original coordinates.

Uncertainty in Mode Shapes

The parametric uncertainties in the mode shape
data a�ect the elements of the input and output in-

uence matrices, which include matrices C1 and C2.
This means that there would be uncertainty associ-
ated with the elements of the basis vectors Nc, as seen
form Eq. (23). Here we assume that the uncertainty in
the mode shapes, whether structured or unstructured,
can be translated into an uncertainty representation
for Nc. With this assumption, the actual basis vec-
tors Nc may be represented in various representations
of uncertainty, such as additive, multiplicative, etc.
Here, let Nc be represented as follows

Nc ! Nc +Mc� (45)

where Mc is a chosen basis for uncertainty in
uence,
and � represent the uncertainty, which can be struc-
tured or unstructured. Using Eq. (45) in Eq. (33),
and assuming that there are no uncertainties in the
frequency and damping data or nonparametric uncer-
tainties present, one obtains

_� = (Â1 +�Â1)�+ (Ĥ1 +�TMT
c H)p (46)

yp = (N̂1 + LMc�)� (47)

where

�Â1 = �TMT
c AMc�+�TMT

c ANc +NT
c AMc�

(48)

A =

�
A1 0
0 A2

�
; H =

�
H1 0
0 H2

�
; L =

�
L1 0
0 L2

�

(49)

From these equations, it is observed that the input and
output parametric uncertainties in the dynamics of the
components, in the original coordinates, di�use into
input, output, and state parametric uncertainties in
the transformed coordinates representation of the syn-
thesized system dynamics. Moreover, the state para-
metric uncertainties involve a quadratic form of the
uncertainty �. This form of uncertainty can be dealt
with the technique presented in [8-9], wherein poly-
nomial uncertainty representations are represented in
optimal linear fractional representation (LFT) form
approximations. The remaining uncertainties given in
Eqs. (46) and (47) may easily be put in a linear frac-
tional representation (LFT) form for robust control
design and/or analysis.

Unmodeled Dynamics

The traditional approach in substructure synthesis
has been to use higher bandwidth in the dynamics
of the components to be synthesized, roughly twice
the bandwidth of interest for the combined structure.
This approach has worked successfully in many appli-
cations. However, it is somewhat ad hoc, with some
potential shortcomings. First, it does not provide
guaranteed levels of accuracy for the predicted system
parameters, such as frequencies, damping ratios, etc.
Second, it may su�er from �nite element method's po-
tential loss of numerical accuracy for higher frequency
modes in addition to a loss of correlation with mea-
sured frequencies. As mentioned earlier, control design
requires accurate assessment of model parameters or
potential uncertainties. Traditionally, unmodeled dy-
namics, which typically include the higher frequency
modes not included in the design model, have been
treated via additive uncertainties in the plant model,
which forces the control system to roll o� to avoid
potentially destabilizing spillover problems. Unfortu-
nately, unmodeled (truncated) dynamics at the com-
ponent level generally do not correspond to the same
in the synthesized (combined) system. Consequently,
it is imperative that the e�ects of unmodeled dynamics
in the components be characterized at the system level
for proper dynamics and controls design and analysis.
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The approach taken here is similar to the treatment
for parametric uncertainty, which essentially consid-
ered the e�ects of uncertainty in the transformed co-
ordinates. Rewrite the dynamics of the components,
including the unmodeled dynamics, in a �rst-order
form.

component i= 1 or 2

�
_xi
_xi

�
=

�
Ai 0
0 Ai

��
xi
xi

�
+

�
Bi

Bi

�
u+

�
Hi

H i

�
pi

(50)

yi =
�
Ci Ci

�� xi
xi

�
(51)

ypi =
�
Li Li

�� xi
xi

�
(52)

Here, the overbars indicate terms associated with the
unmodeled dynamics. It should be noted that in most
applications an accurate knowledge of the parameters
associated with the unmodeled dynamics is not avail-
able, thus they are typically characterized in the form
of uncertainty. Also, note that, similar to the previous
treatments, the feedthrough terms in the non-interface
outputs have been omitted. Following the synthesis
procedure outlined previously, the component dynam-
ics, as given in Eqs. (50)-(52), are appended to obtain
a system similar to the one given by Eqs. (20)-(22),
except that the order of the states are rearranged such
that the modeled dynamics' states appear �rst, fol-
lowed by the unmodeled dynamics' states, i.e., the

state vector is given by
�
xT
1

xT
2

xT
1

xT
2

�T
. Then,

the space of feasible states (in the connectivity and
compatibility sense) are characterized by an equation
similar to Eq. (23), but for the expanded system, as
follows

�
C1 �C2 C1 �C2

�
Nc = 0 (53)

Following the coordinate transformation (similar to
Eq. (24)) and deriving the interface input vector u
to guarantee the compatibility of the components' dis-
placements and rotations at the interface, results in the
synthesized dynamics of the combined system, which
in transformed coordinates takes the form

_� = Â1�+ Ĥ1p (54)

yp = N̂1� (55)

where

Â1 = NT
c

2
664

A1 0 0 0
0 A2 0 0
0 0 A1 0
0 0 0 A2

3
775Nc (56)

Ĥ1 = NT
c

2
664

H1 0
0 H2

H1 0
0 H2

3
775 (57)

N̂1 =

�
L1 0 L1 0
0 L2 0 L2

�
Nc (58)

It is reasonable to expect that both
�
C1 �C2

�
and�

C1 �C2 C1 �C2

�
are full rank. De�ne the

null space of the matrix
�
C1 �C2

�
by the matrix

Nc1 , whose columns are orthogonal. Then, it can eas-

ily be shown that the columns of matrix

�
Nc1

0

�
is

included in the null space of
�
C1 �C2 C1 �C2

�
,

represented by the matrix Nc, from Eq. (53). Now,
choose and partition Nc, such that

Nc =

�
Nc1 Nc1

0 Nc2

�
(59)

Here, the �rst column partition corresponds to the
states of the modeled dynamics, and the second parti-
tion to the states of the unmodeled dynamics. More-
over, the �rst row partition corresponds to the null
space of matrix

�
C1 �C2

�
. Using Eq. (59) in Eqs.

(54) and (55), and separating the states, gives

_�m = ~A1�m + ~A2�u + ~Hmp (60)

_�u = ~A3�m + ~A4�u + ~Hup (61)

with

yp = ~Nm�m + ~Nu�u (62)

where

�
~A1

~A2

~A3
~A4

�
=

�
Nc1 Nc1

0 Nc2

�T
2
664

A1 0 0 0
0 A2 0 0
0 0 A1 0

0 0 0 A2

3
775

�
Nc1 Nc1

0 Nc2

�
(63)

�
~Hm

~Hu

�
=

�
Nc1 Nc1

0 Nc2

�T
2
664

H1 0
0 H2

H1 0

0 H2

3
775 (64)
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Fig. 2 Synthesized cantilevered beam problem

�
~Nm

~Nu

�
=

�
L1 0 L1 0

0 L2 0 L2

��
Nc1 Nc1

0 Nc2

�

(65)

Note from Eq. (60) that ~A1 is the same as Â1 of the
reduced dynamics for the baseline combined model
(see Eq. (33)), so that if no unmodeled dynamics
were present, Eq. (60) would represent the assem-
bled structure. Furthermore, the state equations for
�m and �u are coupled. One way of looking at this is
to imagine that there are two systems, one attributed
to the modeled dynamics (�m states) and the other
to the unmodeled dynamics (�u states), which are in
feedback connection. As mentioned earlier there are
uncertainties associated with the unmodeled dynam-
ics parameter, namely, ~A2, ~A3, ~A4, ~Hu, and ~Nu, i.e.,
they are not known accurately. It can be said that
the uncertainties, due to unmodeled dynamics, ap-
pear in feedback connection to the nominal plant. In
other words, the uncertainties associated with unmod-
eled dynamics in the components, which are typically
represented by additive uncertainty to the component
models, takes the form of an uncertainty in a feedback
loop with the nominal combined structure, when the
synthesized dynamics are considered.

Numerical Results

The proposed methodology for substructure synthe-
sis and controls is applied to a two-dimensional can-
tilevered beam problem to assess its e�ectiveness and
feasibility. The current application involves substruc-
ture synthesis and does not include the substructure
uncertainty treatment. The cantilevered beam is as-
sumed to consist of two substructures, a cantilevered
beam and a free-free beam, as indicated in Figure 2.
The two interface forces/moments as well as the ver-
tical displacement and slope are indicated, along with
an exogenous disturbance at the tip of the second sub-
structure. A performance output representing the tip
de
ection is also considered. The material and geo-

metric properties of the system were chosen to provide
considerable modal content in the low-mid frequency
range to make the synthesis and control design task
more challenging, and are provided in Table 1. The
structure and its two substructures were modeled as
Euler-Bernoulli beams. Each of the two substructures
was modeled using the �rst 40 
exible modes, resulting
in an 80th-order state space model for each of the sub-
structures. The 40 modes used were deemed suÆcient
to provide a basis for describing the �rst 20 modes
of the combined structure. The combined structure
was also modeled using its �rst 20 modes, resulting in
40th-order state space model. This model was used
for validation of the synthesis approach.

Table 1. Geometric and structural properties

Property Substr. 1 Substr. 2 Whole

Length 150 50 200
Mass/Length 1000 1000 1000
Rigidity, EI 1.0e7 1.0e7 1.0e7
No. of modes 40 40 20

Using the procedure outlined in Eqs. (23)-(39), the
dynamics of the two substructures were synthesized
(combined), resulting in a 160th-order model in the
original coordinates or a 158th-order model in trans-
formed coordinates. Note that the synthesized model
may be further reduced in order by using model re-
duction techniques, such as modal cost analysis or
Hankel norm techniques. Table 2 compares the natu-
ral frequencies of the synthesized model vs. that of the
validation (truth) model. Comparison of the frequen-
cies indicate a good match between the two models,
thus demonstrating the feasibility of the proposed syn-
thesis technique. It should be pointed out that the
degree of matching between any two frequencies in the
table depends on whether the modal content used in
the dynamics of each of the components provides a
suÆcient basis to express a mode at the system level.
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Table 2. Natural frequencies

Mode No. True Synthesized

1 0.0088 0.0088
2 0.0551 0.0553
3 0.1542 0.1559
4 0.3022 0.3053
5 0.4996 0.5004
6 0.7464 0.7477
7 1.0425 1.0522
8 1.3879 1.4006
9 1.7827 1.7850
10 2.2268 2.2315
11 2.7203 2.7469
12 3.2631 3.2939
13 3.8553 3.8600
14 4.4968 4.5075
15 5.1877 5.2407
16 5.9279 5.9856
17 6.7175 6.7252
18 7.5564 7.5769
19 8.4447 8.5348
20 9.3823 9.4767

In order to obtain a better assessment of the appro-
priateness of the synthesized model, the Bode magni-
tude plots of the transfer function from the exogenous
disturbance to the tip displacement were computed
and are shown in Figure 3 for the synthesized and truth
models. The two transfer functions agree very closely,
as observed from Figure 3. Note that the peaks of the
magnitude plots are �nite although undamped mod-
els were used to compute the transfer function. The
reason for the contradiction is the coarseness of the
frequency points, i.e., no frequency point was chosen
exactly at a resonance.

These results demonstrate the feasibility of the pro-
posed synthesis approach.

Concluding Remarks

A novel and robust method for synthesizing the
dynamics of substructures has been developed. The
interface forces and moments were considered as con-
trol inputs, and used to design a constant gain com-
pensator which synthesizes the combined dynamics of
the substructures. The synthesized structure can be
realized in original coordinates, or alternatively, in
a transformed coordinates (obtained via orthogonal
transformations). The realization of the system dy-
namics in transformed coordinates has the advantages
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Fig. 3 Bode magnitude plot from exogenous dis-
turbances to tip displacement; true(solid), synthe-
sized(dashed)

of being more amenable to uncertainty and robust-
ness analysis and design as well as being smaller in
order. Using this realization, uncertainty models of
reasonable size and complexity have been derived for
the combined structure from parametric and nonpara-
metric uncertainties in the substructure models. These
models can and will be used for robust control design.
An application of the proposed synthesis technique to
a cantilevered beam problem demonstrated its feasi-
bility.
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